Quantificational Logic Equivalences

In the principles below, we use $\varphi(x)$ to indicate any wff with x as a free variable

Quantifier Negation:

1a.
$$\neg \forall x \ \phi(x) \Leftrightarrow \exists x \ \neg \phi(x)$$

1b. $\neg \exists x \ \phi(x) \Leftrightarrow \forall x \ \neg \phi(x)$

Null Quantification: (x does not occur as a free variable in φ)

2a.
$$\forall x \varphi \Leftrightarrow \varphi$$

2b. $\exists x \varphi \Leftrightarrow \varphi$

Replacing Bound Variables: $(\phi(y))$ is the wff that results by substituting y for every free variable x in $\phi(x)$, where y does not already occur as a free variable in $\phi(x)$

3a.
$$\forall x \ \phi(x) \Leftrightarrow \forall y \ \phi(y)$$

3b. $\exists x \ \phi(x) \Leftrightarrow \exists y \ \phi(y)$

Swapping Quantifiers of Same Type

4a.
$$\forall x \forall y \ \phi(x,y) \Leftrightarrow \forall y \forall x \ \phi(x,y)$$

4b. $\exists x \exists y \ \phi(x,y) \Leftrightarrow \exists y \exists x \ \phi(x,y)$

Aristotelean Square of Opposition:

5a.
$$\neg \forall x (\phi(x) \rightarrow \psi(x)) \Leftrightarrow \exists x (\phi(x) \land \neg \psi(x))$$

5b. $\neg \exists x (\phi(x) \land \psi(x)) \Leftrightarrow \forall x (\phi(x) \rightarrow \neg \psi(x))$

Quantifier Distribution:

6a.
$$\forall x \ (\phi(x) \land \psi(x)) \Leftrightarrow \forall x \ \phi(x) \land \forall x \ \psi(x)$$

6b. $\exists x \ (\phi(x) \lor \psi(x)) \Leftrightarrow \exists x \ \phi(x) \lor \exists x \ \psi(x)$

Prenex Laws (x does not occur as a free variable in ψ)

7a1.
$$\forall x \ (\phi(x) \land \psi) \Leftrightarrow \forall x \ \phi(x) \land \psi$$

7a2. $\exists x \ (\phi(x) \land \psi) \Leftrightarrow \exists x \ \phi(x) \land \psi$
7b1. $\forall x \ (\phi(x) \lor \psi) \Leftrightarrow \forall x \ \phi(x) \lor \psi$
7b2. $\exists x \ (\phi(x) \lor \psi) \Leftrightarrow \exists x \ \phi(x) \lor \psi$
7c1. $\forall x \ (\phi(x) \to \psi) \Leftrightarrow \exists x \ \phi(x) \to \psi \ (! \ Quantifier \ changes!)$
7c2. $\exists x \ (\phi(x) \to \psi) \Leftrightarrow \forall x \ \phi(x) \to \psi \ (! \ Quantifier \ changes!)$
7d1. $\forall x \ (\psi \to \phi(x)) \Leftrightarrow \psi \to \forall x \ \phi(x)$
7d2. $\exists x \ (\psi \to \phi(x)) \Leftrightarrow \psi \to \exists x \ \phi(x)$